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ABSTRACT
This report is the culmination of a semester-long reading project on Arithmetic

of Elliptic curves under the guidance of Dr. Somnath Jha, IIT Kanpur. The the-
ory of elliptic curves lies in the center of what we understand and what we don’t
understand. The field is a very rich branch of mathematics and once a famous
mathematician said that it is possible to write endlessly on elliptic curves. Yet the
field is full deep conjectures and even very fundamental results are unknown. In this
report, we look at one of the (proven)fundamental results about elliptic curves, the
Mordell-Weil Theorem and ideas and tools that go into its proof.

This report is expository in nature and no new result is being claimed.
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1 Introduction
Elliptic curves are non-singular curves of genus 1. It can be proved that every
such curve can be given by a so called Weierstrass equation. Now curves given by
Weierstrass equation have an amazing property that their points forms a group. The
group law can be described geometrically very easily which consists of drawing lines
and taking intersection with curve so it is called chord-tangent law.

Mordell-Weil theorem is one of the fundamental results in the theory of Elliptic
curves which says that when an elliptic curve is defined over a number field K, then
its group of K-rational points is finitely generated. So there are only finite number
of K−rational points which generate all other K−rational point using the chord
tangent law. It was proved by Louis Mordell for Q and generalized by Andre Weil
to general number fields.

In this report we define elliptic curves, prove that every elliptic curve can be given
by a Weierstrass equation, define its group law and prove the Mordell-Weil theorem
for Q. The most difficult part in proving the theorem is a result called Weak Mordell-
Weil theorem which we prove in full generality. From here, with a little more effort,
one can prove the Mordell-Weil theorem for arbitrary number fields.

2 Preliminaries
Notation which will be used throughout this note:

K a perfect field
K̄ a fixed algebraic closure of K

Gal(K̄/K) the Galois group of K̄/K
Here we state some standard results related to curves (algebraic varieties of di-

mension 1). The results of this section will be used to prove the equivalence between
elliptic curves and non-singular Weierstrass equations.(Theorem 3.11). The main
result of this section is the Riemann-Roch theorem and its consequences

Here we assume familiarity with basic algebraic geometry (Silverman [2008], Chap-
ter 1). Let C be a curve and P ∈ C. Following notation will be used throughout
this section:

C/K a curve defined over K
K̄(C) the function field of C over K
K(C) the function field of C over K

2.1 Map between curves
Proposition 2.1. Let C be a curve, V ⊂ PN be a variety, P ∈ C be a non-singular
point and φ : C −→ V be a rational map. Then φ is regular at P. In particular, if
C is a non-singular curve then φ is a morphism.
Theorem 2.2. Let φ : C1 → C2 be a morphism of curves. Then φ is either constant
or surjective.
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2.2 Divisors
Let C be a non-singular curve for the rest of this section.
Definition 2.3. The divisor group of C, denoted by div(C) is the free abelian group
generated by points on C. i.e. div(C) = ⊕P∈CZ(P ).
Definition 2.4. To every f ∈ K̄(C)∗, we associate a divisor to f given by

div(f) =
∑
P∈C

ordP (f)(P )

Definition 2.5. A divisor D ∈ Div(C) is called principal if ∃f ∈ K̄(C)∗ s.t.
D = div(f). The set of principal divisors are denoted by Princ(C). Two divisors
are called linearly dependent if their difference is principal. If D1 and D2 are linearly
dependent then we write D1 ∼ D2.
Definition 2.6. The divisor class group (or Picard group) of C, denoted by Pic(C)
is Div(C)/Princ(C).
Proposition 2.7. Let C be a non-singular curve and f ∈ K̄(C)∗.
(a) div(f)=0 ⇐⇒ f ∈ K̄∗.

(b) deg(div(f))=0.

2.3 Differentials
Definition 2.8. Let C be a curve. The space of (meromorphic) differential forms
on C, denoted by ΩC is the K̄-vector space generated by symbols of the form dx
where x ∈ K̄(C) subject to relations
(a) d(x+ y) = dx+ dy for all x, y ∈ K̄(C),

(b) d(xy) = xdy + ydx for all x, y ∈ K̄(C),

(c) da = 0 for all a ∈ K̄.
Proposition 2.9. The space ΩC is a one dimensional K̄(C)-vector space.
Proposition 2.10. Let P ∈ C, and let t ∈ K̄(C) be a uniformizer at P.
(a) For every ω ∈ ΩC, there exists a unique function g ∈ K̄(C), depending on ω

and t, satisfying ω = gdt. We denote g by ω/dt.

(b) Let f ∈ K̄(C) be regular at P. Then df/dt is also regular at P.

(c) Let ω ∈ ΩC. The quantity ordP (ω/dt) is independent of choice of uniformizer
t. We call this value the order of ω at P and is denoted by ordP (ω).

Definition 2.11. Let ω ∈ ΩC . The divisor associated to ω is

div(ω) =
∑
P∈C

ordP (ω)(P )

Definition 2.12. The differential ω is called regular or holomorphic if ordP (ω) ≥ 0
for all P ∈ C. It is called non-vanishing if ordP (ω) ≤ 0 for all P ∈ C.
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Remark 2.13. Let ω1, ω2 ∈ ΩC be non-zero differentials, then the proposition 2.9
implies that ∃ a function f ∈ K̄(C)∗ s.t. ω1 = fω2. Hence div(ω1) ∼ div(ω2) and
the following definition makes sense.
Definition 2.14. The canonical divisor class on C is the image in Pic(C) of div(ω)
for any non-zero differential ω ∈ ΩC . Any divisor in this divisor class is called a
canonical divisor.

2.4 The Riemann-Roch Theorem
Definition 2.15. A divisor D = ∑

nP (P ) is called positive (or effective), denoted
by D < 0, if nP ≥ 0 for every P ∈ C. For D1, D2 ∈ Div(C), we write D1 < D2 to
indicate D1 −D2 < 0.
Example 2.16. Let f ∈ K̄(C)∗ which is regular everywhere except at P ∈ C
where it has pole of order atmost n. These requirements on f can be written as
div(f) < −n(P ). Similarly, div(f) < (Q)−n(P ) says that in addition, f has a zero
at Q.
Definition 2.17. Let D ∈ Div(C). We associate to D the set of functions,

L(D) = {f ∈ K̄(C)∗ : div(f) < −D}
⋃
{0}

It can be proven that L(D) forms a K̄-vector space and its dimension over K̄ is
denoted by `(D).
Proposition 2.18. Let D ∈ Div(C).
(a) If deg(D) < 0 then L(D) = {0} and `(D) = 0.

(b) If D′ ∈ Div(C) s.t. D′ ∼ D. Then L(D) ∼= L(D′) and so `(D) = `(D′).

Proof. (a) If f ∈ L(D) with f 6= 0, then div(f) < −D. This implies deg(div(f)) ≥
−deg(D). Now use 2.7(b) to conclude that deg(D) ≥ 0.

(b) Let D = D′ + div(g), then L(D) −→ L(D′), f 7→ fg is an isomorphism.

Example 2.19. Let KC = div(ω) be a canonical divisor. If f ∈ L(KC), then

div(f) < −div(ω) =⇒ div(fω) < 0

So fω is holomorphic. Conversely, if fω is holomorphic then f ∈ L(KC). Hence

L(KC) = {ω ∈ ΩC : ω is holomorphic}

Now we state one of the fundamental results in algebraic geometry.
Theorem 2.20. (Riemann-Roch) Let C be a non-singular curve and KC be a
canonical divisor. Then there is an integer g ≥ 0 s.t. for every D ∈ Div(C),

`(D)− `(KC −D) = deg(D)− g + 1

Corollary 2.21. (a) `(KC) = g
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(b) deg(KC) = 2g − 2

(c) If deg(D) ≥ 2g − 2, then `(D) = deg(D)− g + 1.

Proof. (a) Use theorem 2.20 with D = 0. Note `(0) = 1

(b) Use theorem 2.20 with D = KC .

(c) From (b) we have deg(KC −D) < 0. Now use proposition 2.18(a).
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3 Geometry of Elliptic curves
In this section, we define elliptic curves, our main objects of study and see some of
their basic properties.

3.1 Weierstrass equations
Definition 3.1. A Weierstrass equation is a homogenous equation of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (1)
where a1, ..., a6 ∈ K̄.

Elliptic curves are curves of genus one with a specified base point. We will see later
that every such curve has a Weierstrass equation with specified point O = [0, 1, 0]
on the line at ∞.

To ease the notation, we generally write dehomogenized equation of E
E : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6,

while always remembering that there is an extra point O = [0, 1, 0]. If a1, ..., a6 ∈ K,
we say that E is defined over K.

If char(K) 6= 2, then we can simplify equation by completing square. Thus the
substitution y 7−→ (y− a1x− a3)/2 gives (where b2 = a2

1 + 4a4, b4 = 2a4 + a1a3 and
b6 = a2

3 + 4a6)
E : y2 = 4x3 + b2x

2 + 2b4x+ b6

Useful quantities associated to E are
b8 = a2

1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4,

c4 = b2
2 − 24b4,

c6 = −b3
2 + 36b2b4 − 216b6,

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6,

j = c3
4/∆

ω = dx

2y + a1x+ a3
= dy

3x2 + 2a2x+ a4 − a1y

Definition 3.2. ∆ is called the discriminant of the Weierstrass equation 1, j is
called the j-invariant and ω is called invariant differential of the elliptic curve.

Let P = (x0, y0) be a point satisfying a Weierstrass equation
f(x, y) = y2 + a1xy + a3y − x3 − a2x

2 − a4x− a6

and assume that P is singular point of the curve f(x, y) = 0. Then
∂f

∂x
(P ) = ∂f

∂y
(P ) = 0

It follows that there are α, β ∈ K̄ s.t. the Taylor series expansion of f(x, y) at P
f(x, y)− f(x0, y0) = ((y − y0)− α(x− x0))((y − y0)− β(x− x0))− (x− x0)3
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Definition 3.3. With notation as above, the singular point P is a node if α 6= β.
In this case, the lines (y− y0) = α(x− x0) and (y− y0) = β(x− x0) are the tangent
lines at P . If α = β, then we say P is a cusp.
Proposition 3.4. The curve given by a Weierstrass equation is non-singular ⇐⇒
∆ = 0.
Proposition 3.5. The invariant differential associated to a non-singular Weier-
strass equation is holomorphic and non-vanishing. i.e. div(ω) = 0.

3.2 The group law
Let E ⊂ P2 be an elliptic curve given by Weierstrass equation, P = (x, y) ∈ E and
L ⊂ P2 be a line. Since equation has degree 3, the line L intersects E at exactly 3
points say P,Q,R. Of course, when L is tangent then P,Q,R need not be distinct.
We define a composition law + given by the following:
Definition 3.6. (Composition law) Let P,Q ∈ E, let L be line through P and
Q (if P = Q then L is tangent at P ) and let R be the third point of intersection of
L with E. Let L′ be line through R and O which intersects E at a third point. We
denote third point by P +Q.

−4 −2 2 4

−6

−4

−2

2

4

6 y2 = x3 + 7

P

Q

P1 + P2

R

x

y

Proposition 3.7. The composition law has following properties:
(a) P+O=P for all P ∈ E.
(b) P+Q=Q+P for all P,Q ∈ E.
(c) Let P ∈ E, then there exists a point on E, denoted by −P s.t. P + (−P ) = O.
(d) Let P,Q,R ∈ E. Then (P +Q) +R = P + (Q+R).

In other words, the composition law makes E into an abelian group with identity
O. Further if E is defined over K, then

E(K) = {(x, y) ∈ E : x, y ∈ K} ∪ {O}
is a subgroup of E.
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Proof. All of this is clear except the associativity law which can be verified directly
by a tedious calculation using explicit formulas for addition law we give later.

Remark 3.8. Let m ∈ Z be an integer and P ∈ E. Then we let [0]P = O,
[m]P = P + ...+ P︸ ︷︷ ︸

m−times

( if m > 0) and [m]P = −P − ...− P︸ ︷︷ ︸
|m|−times

( if m < 0)

Proposition 3.9. (Group law algorithm) Let E be an elliptic curve given by
Weierstrass equation (1).
(a) Let P0 = (x0, y0). Then −P0 = (x0,−y0 − a1x0 − a3).

Next let P1 + P2 = P3 with Pi = (xi, yi) ∈ E for i = 1, 2, 3
(b) If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then P1 + P2 = O. Otherwise define λ

and ν by the following formulas:

If x1 6= x2, then λ = y2 − y1

x2 − x1
and ν = y1x2 − y2x1

x2 − x1

If x1 = x2, then λ = 3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
and ν = −x

3
1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3
Then y = λx+ ν is the line through P1 and P2 or tangent to E if P1 = P2.

(c) P3 = P1 + P2 has coordinates x3 = λ2 + a1λ − a2 − x1 − x2 and y3 = −(λ +
a1)x3 − ν − a3. In particular, the duplication formula for P = (x, y) ∈ E

x([2]P ) = x4 − b4x
2 − 2b6x− b8

4x3 + b2x2 + 2b4x+ b6
(2)

where b2, b4, b6, b8 are the polynomials in the ai’s given in section 2.1.

Proof. The formulas are a just trivial matter of finding slope of line passing through
two points, slope of tangent line at a given point and finding coordinates of inter-
section of a line with the curve.

3.3 Singular Weierstrass Equations
Definition 3.10. Let E be a curve given by Weierstrass equation. The non-singular
part of E, denoted by Ens is the set of non-singular points of E.

Here we see that if we remove singular points from the curve then remaining curve
Ens is still a group. Recall from definition 3.4 that there are two possibilities for a
singular point.
Proposition 3.11. Let E be a curve given by Weierstrass equation with ∆ = 0, so
E has a singular point S. The composition law 3.6 makes Ens into an abelian group.
(a) Suppose E has a node and let y = α1x + β1 and y = α2x + β2 are the distinct

tangent lines at S. Then the map

Ens −→ K̄∗, (x, y) 7−→ y − α1x− β1

y − α2x− β2

is an isomorphism of abelian groups.
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(b) Suppose that E has a cusp and y = αx+ β be the tangent line at S. Then

Ens −→ (K̄,+), (x, y) 7−→ x− x(S)
y − αx− β

is an isomorphism of abelian groups. ((K̄, +) is the additive group of K̄)

3.4 Elliptic curves
Definition 3.12. An elliptic curve is a pair (E,O), where E is non-singular curve
of genus one and O ∈ E. If E is defined over K and O ∈ E(K) then we write E/K.

It can be proved using Riemann-Roch theorem that every elliptic curve is isomor-
phic to plane cubic. Precisely
Proposition 3.13. Let E/K be an elliptic curve. Then
(a) There exist functions x, y ∈ K(E) s.t. the map φ : E → P2, φ = [x, y, 1]

gives an isomorphism of E/K onto a curve given by Weierstrass equation (1)
with a1, a2, ..a6 ∈ K and φ(O) = [0, 1, 0]. The functions x and y are called
Weierstrass coordinates of E.

(b) Any two Weierstrass coordinates for E as in (a) are related by linear change of
variables of the form

X = u2X ′ + r, Y = u3Y ′ + su2X ′ + t where u ∈ K∗ and r, s, t ∈ K (3)

(c) Conversely, every non-singular cubic curve given by Weierstrass equation 1 de-
fines an elliptic curve over K.

Proof. (a) Since g = 1, we have `(n(O)) = dim(L(n(O))) = n for all n ≥ 1. Choose
functions x and y such that {1, x} and {1, x, y} are bases of L(2(O)) and L(3(O))
respectively. Also L(6(O)) has dimension 6 but it contains seven functions

1, x, y, x2, xy, y2, x3

It follows there is linear relation A1+A2x+A3y+A4x
2+A5xy+A6y

2+A7x
3 = 0.

Note that A6A7 6= 0, since otherwise every term would have a pole at O of a
different order, and so all of the Aj’s would vanish. Replacing x and y by
−A6A7x and A6A

2
7y, respectively, and dividing by A3

6A
4
7, we get a cubic equation

in Weierstrass form. This gives a map φ : E −→ P2, φ = [x, y, 1]
whose image lies in C, the locus described by a Weierstrass equation. Note
that φ : E −→ C is a morphism (by 2.1) and it is surjective (by 2.2) and
φ(O) = [0, 1, 0]. One can prove that φ is an isomorphism.

(b) Clearly {1, x} and {1, x′} are both bases for L(2(O)) and {1, x, y} and {1, x′, y′}
are bases for L(3(O)). Thus there are constants u1, u2 ∈ K∗ and r, s2, t ∈ K s.t.

x = u1x
′ + r, and y = u2y

′ + s2x
′ + t

Derive that u3
1 = u2

2 and let u = u2/u1 and s = s2/u
2.

(c) Use Riemann-Roch theorem and proposition 3.5.

11



4 The formal group of elliptic curves
In this section, we study ”infinitesimal” neighbourhood of E centered at O. To do
this, we associate a group to E called its formal group. The main result is theorem
4.11 which will be used to prove theorem 5.6.

4.1 Expansion around O

To study addition law of E close to O, we make change of variables

z = −x/y and w = −1/y so that x = z/w and y = −1/w (4)

The point O is now (z, w) = (0, 0). The Weierstrass equation of E becomes

w = z3 + a1zw + a2z
2w + a3w

2 + a4zw
2 + a6w

3 = f(z, w)

Now we substitute this equation into itself recursively so as to express w as a
power series in z.

w = z3 + (a1z + a2z
2)w + (a3 + a4z)w2 + a6w

3

= z3 + (a1z + a2z
2)[z3 + (a1z + a2z

2)w + (a3 + a4z)w2

+ a6w
3] + (a3 + a4z)[z3 + (a1z + a2z

2)w + (a3 + a4z)w2 + a6w
3]2

+ a6[z3 + (a1z + a2z
2)w + (a3 + a4z)w2 + a6w

3]3

.

.

.

= z3(1 + A1z + A2z
2 + ůůů) = w(z)

To describe more precisely the algorithm for producing w(z), define a sequence

f1(z, w) = f(z, w), and fm+1(z, w) = fm(z, f(z, w))

Then set w(z) = limm→∞fm(z, 0) provided this limit makes sense.
Proposition 4.1. (a) The procedure described above gives a power series

w(z) = z3(1 + A1z + A2z
2 + ...) ∈ Z[a1, ..., a6]JzK

(b) The series w(z) is the unique power series in Z[a1, ..., a6]JzK satisfying

w(z) = f(z, w(z))

Proof. Both (a) and (b) are special cases of Hensel’s lemma. To prove it, apply
lemma 4.2 with R = Z[a1, ..., a6]JzK, I = (z), F (w) = f(z, w) − w, a = 0 and
α = −1.

We recall Hensel’s lemma from Algebraic Number Theory.
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Lemma 4.2. (Hensel’s Lemma) Let R be a ring that is complete w.r.t. some
ideal I ⊂ R, and let F (w) ∈ R[w] be a polynomial. Suppose that there is an integer
n ≥ 1 and an element a ∈ R satisfying

F (a) ∈ In and F ′(a) ∈ R∗

Then for any α ∈ R satisfying α ≡ F ′(a) (mod I), the sequence

w0 = a and wm+1 = wm −
F (wm)
α

converges to an element b ∈ R satisfying F (b) = 0 and b ≡ a(mod In). If R is an
integral domain, then these conditions determine b uniquely.

4.2 Formal group of Elliptic curves
Using the power series w(z), we derive Laurent series for x and y

x(z) = z

w(z) = 1
z2 −

a1

z
− a2 − a3z − (a4 + a1a3)z2 − ...,

y(z) = − 1
w(z) = − 1

z3 + a1

z2 + a2

z
+ a3 + (a4 + a1a3)z − ...

The pair (x(z), y(z)) provides a formal solution to the Weierstrass equation
E : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6 (5)
Now let K be a complete local field with the ring of integers R and the maximal

ideal M. Suppose E is defined over K with a1, ..., a6 ∈ R. Then the power series
x(z) and y(z) will converge for any z ∈M. Thus we get an injective map

M−→ E(K), z −→ (x(z), y(z))
(This map is injective because it has an inverse (x, y) 7−→ −x/y). Let z1, z2 be
independent indeterminates and let w1 = w(z1) and w2 = w(z2). In the (z, w)-
plane, the slope of line connecting (z1, w1) and (z2, w2) has slope

λ = λ(z1, z2) = w2 − w1

z2 − z1
=
∞∑
n=3

An−3
zn2 − zn1
z2 − z1

∈ Z[a1, ..., a6]Jz1, z2K

Letting ν = ν(z1, z2) = w1 − λz1 and substituting w = λz − ν into equation 4, we
get a cubic with roots z1, z2 and z3(say). Then

z3 = z3(z1, z2) = −z1 − z2 + a1λ+ a3λ
2 − a2y − 2a4λν − 3a6λ

2ν

1 + a2λ+ a4λ2 + a6λ3

Letting w3 = λ(z1, z2)z3(z1, z2) + ν(z1, z2),. Using uniqueness condition of propo-
sition 4.1(b), we get that w3 = w(z3). i.e. we can compute the w coordinate of
−(z1, w1)− (z2, w2) using the power series w.

In the (x, y)-plane, the inverse of (x, y) is (x,−y − a1x− a3). Remembering that
z = −x/y, we can compute z−coordinate of inverse of (z, w)

i(z) = x(z)
y(z) + a1x(z) + a3

= z−2 − az1−1− ...
−z−3 + 2a1z−2 + ...

and similarly w−coordinate of inverse of (x, y) is w(i(z)). This gives formal addi-
tion law F (z1, z2) = i(z3(z1, z2)).
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4.3 Formal Groups and their properties
Definition 4.3. Let R be a ring. A (one parameter commutative) formal group F
over R is a power series F (X, Y ) ∈ RJzK with the following properties:
(a) F (X, Y ) = X + Y+ (degree ≥2 terms)
(b) F (X,F (Y, Z)) = F (F (X, Y ), Z) (associativity)
(c) F (X, Y ) = F (Y,X) (commutativity)
(d) There is a unique power series i(T ) ∈ RJzK s.t. F (T, i(T )) = 0
(e) F (X, 0) = X,F (0, Y ) = Y

We call F (X, Y ) the formal group law of F .
Definition 4.4. Let (F , F ) and (G, G) be formal groups defined over R. A ho-
momorphism from F to G defined over R is a power series f ∈ RJzK that satisfies
f(F (X, Y )) = G(f(X), f(Y )).

Isomorphim of formal groups are defined in the obvious way.
Definition 4.5. Let E be an elliptic curve given by Weierstrass equation with
coefficients in R. The formal group associated to E is given by F (z1, z2) described
in previous section and is denoted by Ê.
Example 4.6. Let (F , F ) be a formal group. Define homomorphisms [m] : F −→ F
inductively for m ∈ Z:

[0](T ) = 0, [m+ 1](T ) = F ([m](T ), T ), [m− 1](T ) = F ([m](T ), i(T ))
Proposition 4.7. (a) [m](T ) = mT+(higher order terms)
(b) If m ∈ R∗, then [m] : F −→ F is an isomorphism.

Proof. a) follows from induction on m and noting that 0 = F (T, i(T )) = T + i(T ) +
.. =⇒ i(T ) = −T + ... (b) follows from following lemma.

Lemma 4.8. Let a ∈ R∗ and f(T ) ∈ RJT K be a power series of the form f(T ) =
aT+(higher-order terms). Then there is a unique power series g(T ) ∈ RJT K satis-
fying f(g(T )) = T . The series g also satisfies g(f(T )) = T .

Proof. Construct a sequence of polynomials gn(T ) ∈ R[T ] inductively satisfying
f(gn(T )) ≡ T (mod T n+1) and gn+1(T ) = gn(T ) (mod T n+1)

Then the limit g(T ) = lim gn(T ) exists in RJT K and satisfies f(g(T )) = T . To
start the induction, let g1(T ) = a−1T . To prove g(f(T )) = T , apply above to
g(T ) = a−1T + ... to get h(T ) ∈ RJT K s.t. g(h(T )) = T . Now

g(f(T )) = g(f(g(h(T )))) = g(f ◦ g(h(T ))) = g(h(T )) = T

To prove uniqueness, let G(T ) ∈ RJT K be another power series satisfying f(G(T )) =
T . Then

g(T ) = g(f(G(T ))) = g ◦ f(G(T )) = G(T )

14



Now we come to our main theorem of this section. We fix the following notation:
R a complete local ring

M the maximal ideal of R

k =R/M, the residue field of R

F a formal group defined over R, with formal group law F (X, Y )
Definition 4.9. The group associated to F/R, denoted by F(M), is the set M
endowed with group operations x⊕F y = F (x, y) and 	Fx = i(x) for all x, y ∈M.

Example 4.10. Let Ê be the formal group associated to an elliptic curve E/K
where K = Q(R)(field of fractions). As noted in section 4.2, we have injective map

M−→ E(K), z 7−→ (x(z) = z/w(z), y(z) = −1/w(z))

The construction of the power series for Ê imply that this map is a homomorphism
from Ê(M) to E(K).
Theorem 4.11. Let p=char(k)(where p can be 0). Then every torsion element in
F(M) has order that is power of p.

Proof. Multiplying an arbitrary torsion element by an appropriate power of p, it
suffices to prove that there are no non-zero torsion elements of order prime to p.
So let m ≥ 1 with (p,m) = 1. Since R is local, this means m ∈ R∗. So [m] is an
automorphism of the formal group F by proposition 4.7(b). Now let x ∈ F(M)
such that [m](x) = 0 =⇒ x = 0.
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5 Elliptic curves over local fields
Here we prove one key indredient (theorem 5.6) which is used in the proof of the
Weak Mordell-Weil theorem.

Following notation will be used throughout this section unless otherwise stated:
K a local field, complete w.r.t a discrete valuation v

R ={x ∈ K : v(x) ≥ 0}, the ring of integers of K

R∗ ={x ∈ K : v(x) = 0}, the unit group of R

M ={x ∈ K : v(x) > 0}, the maximal ideal of R

π a uniformizer for R i.e. M = πR

k =R/M, the residue field of R
Let E/K be an elliptic curve and let

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

be a Weierstrass equation for E/K. The substitution (x, y) 7→ (u−2x, u−3y) leads
to a new equation in which ai is replaced by uiai. So choosing u to be divisible by
large power of π, we can assume that all ai ∈ R. So we have v(∆) ≥ 0. Since v is
discrete, among all such equations, we can choose one which minimises v(∆).
Definition 5.1. Let E/K be an elliptic curve. A Weierstrass equation for E is
called minimal (Weierstrass) equation for E if v(∆) is minimized subject to the
condition that a1, ..., a6 ∈ R. The minimal value of v(∆) is called valuation of
minimal discriminant of E at v.
Remark 5.2. Value of v(∆) is changed only by a multiple of 12, so we can say that

ai ∈ R and v(∆) < 12 =⇒ the equation is minimal

If char(K) 6= 2, 3 then converse also holds.
Proposition 5.3. A minimal Weierstrass equation is unique upto change

x = u2x′ + r, and y = u3y′ + u2sx′ + t

of coordinates where u ∈ R∗ and r, s, t ∈ R.

Proof. The only non-trivial part in above proposition is why u ∈ R∗? This is clear
since 12v(u) + v(∆′) = v(∆) and v(∆′) = v(∆) implies v(u) = 0.
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5.1 Reduction modulo π and torsion points
The natural reduction map R −→ k = R/πR is denoted by t 7→ t̃. Having chosen
a minimal Weierstrass equation for E/K, we reduce its coefficients modulo π to
obtain a (possibly singular) curve over k, called reduction of E modulo π

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6

Let P ∈ E(K), homogenous coordinates P = [x0, y0, z0] with x0, y0, z0 ∈ R and
atleast one of them in R∗. Then P̃ = [x̃0, ỹ0, z̃0] ∈ Ẽ(k). This defines a reduction
map

E(K) −→ Ẽ(k), P 7−→ P̃

Define two subsets of E(K) as follows:
E0(K) := {P ∈ E(K) : P̃ ∈ Ẽns(k)} = {Points in E(K)with non-singular reduction},
E1(K) := {P ∈ E(K) : P̃ = Õ} = ker(reduction map)
From proposition 5.3, the above sets do not depend upon the minimal Weierstrass
equation chosen.
Proposition 5.4. There is an exact sequence of abelian groups

0 E1(K) E0(K) Ẽns(k) 0mod π

Proof. The non-trivial things to prove in this proposition are 1)Surjectivity of the
reduction map, 2)Reduction map is a homomorphism and 3)E0(K) is a subgroup
of E(K).

Surjectivity is shown using Hensel’s lemma and completeness of K: Suppose
f(x, y) = y2 + a1xy + a3y − x3 − a2x

2 − a4x − a6 be minimal Weierstrass equation
and let P̃ = (α̃, β̃) ∈ Ẽns(k). WLOG assume ∂f̃

∂x
(P̃ ) 6= 0. Choose any x0 ∈ R with

x̃0 = α̃. Then f(x0, y) = 0 and modulo π, it has simple root β̃. Now use Hensel’s
lemma to lift this root to y0 ∈ R s.t. ỹ0 = β̃ and f(x0, y0) = 0.

To prove 2), Let P1, P2 ∈ E0(K) and P3 ∈ E(K) be points satisfying P1 + P2 +
P3 = O. Thus ∃ a line L that intersects E at the three points P1, P2, P3, counted
with appropriate multiplicities. The idea is to prove that L̃ intersections Ẽ at
P̃1, P̃2, P̃3 with correct multiplicities from which it follows that P3 ∈ E0(K) and
P̃1 + P̃2 + P̃3 = Õ but there are many cases to consider:
(a) P̃1, P̃2, P̃3 are distinct
(b) P1 6= P2 but P̃1 = P̃2

(c) P1 = P2 6= P3 and P̃1 = P̃2 6= P̃3 , etc.
which can be proven case by case.

Proposition 5.5. Let E/K be given by a minimal Weierstrass equation, let Ê/K
be the formal group associated to E and, let w(z) ∈ RJtK be the power series from
section 4.2. Then the map is an isomorphism of groups.

Ê(M) −→ E1(K), z 7−→
(

z

w(z) ,−
1

w(z)

)
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Proof. In example, we obtained an injective map Ê(M) → E(K) given by above
mapping. Its image is in E1(K) since v(−1/w(z)) = −3v(z) < 0. It is surjective
since we have a well defined map E1(K) → Ê(M) given by (x, y) 7→ −x/y whose
composition with above map is identity on Ê(M).

Theorem 5.6. Let E/K be an elliptic curve and m ≥ 1 be an integer such that
(m, char(k)) = 1
(a) The subgroup E1(K) has no non-trivial points of order m.

(b) Assume further that the reduced curve Ẽ/k is non-singular. Then the reduction
map E(K)[m] −→ Ẽ(k) is injective.

Proof. (a) is clear from theorem 4.11 and proposition 5.5. (b) is clear from the exact
sequence in proposition 5.4 and part (a) of this theorem(Ẽns(k) = Ẽ(k)).

From section 3.1, the Weierstrass equation of the reduced curve Ẽ is one of the
three types. We classify E according to these possibilites.
Definition 5.7. (a) E has good (or stable reduction) if Ẽ is non-singular.

(b) E has multiplicative (or semi-stable reduction) if Ẽ has a node.

(c) E has additive (or unstable reduction) if Ẽ has a cusp.
In cases (b) and (c), we say that E has bad reduction.
We also recall the definition of an unramified extension of K and inertia group of

Galois extensions of a local field. These definitions will be useful in next section.
Theorem 5.8. ([Neukirch, 2008], II.4.8) Let K ′/K be a finite extension of degree n.
Then there is a unique extension w of valuation v where w = 1

n
v ◦NK′/K. Morover,

K ′ is complete w.r.t. the valuation w.
Definition 5.9. Let K ′/K be a finite extension of local fields. We say that K ′/K
is unramified if the residue field extension k′/k is seperable and [K ′ : K] = [k′ : k].
Definition 5.10. Let K ′/K be finite Galois extension and σ ∈ Gal(K ′/K), then
define σ̄ : k′ −→ k′, x mod p′ 7−→ σ(x) mod p′. Then σ̄ ∈ Gal(k′/k). So we have
map Gal(K ′/K) −→ Gal(k′/k), σ 7−→ σ̄. The kernel of this map is called inertia
group of K’/K, denoted by IK′/K .
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6 Mordell-Weil Theorem
In this section, we complete the proof of the Mordell-Weil theorem for elliptic curves
over Q. First we prove the Weak Mordell-Weil theorem in full generality (over
number fields). Then we see descent theorem. Finally we define height function on
E(Q) and prove it has required properties thereby completing the proof of Mordell-
Weil theorem using descent theorem.

We fix the notation which will be used throughout this section:
• K a number field

• MK a complete set of inequivalent absolute values on K

• M∞
K the archimedian absolute values in MK

• M0
K the non-archimedian absolute values in MK

• v(x) :=−log|x|v, for absolute value v ∈MK

• R is the ring of integers of K, equals {x ∈ K : v(x) ≥ 0 ∀v ∈M0
K}

• Kv is the completion of K at v ∈MK

6.1 The Weak Mordell-Weil Theorem
In this section, we give the proof of the following theorem.
Theorem 6.1. (Weak Mordell-Weil theorem) Let m ≥ 2 be an integer. Then
E(K)/mE(K) is a finite group.

For the rest of the section, let E/K and m are as in the theorem 5.1. The following
lemma says that it is sufficient to prove theorem 5.1 under additional assumption
that E[m] ⊂ E(K) (which we assume onwards).
Lemma 6.2. Let L/K be a finite Galois extension. Then

E(L)/mE(L) finite =⇒ E(L)/mE(L) finite

Proof. The inclusion E(K)→ E(L) induces a natural map with kernel Φ

E(K)/mE(K) −→ E(L)/mE(L), Φ = E(K) ∩mE(L)
mE(K)

For each P mod(mE(K)) ∈ Φ, choose QP ∈ E(L) satisfying [m]QP = P . Then
define a map of sets

λP : Gal(L/K) −→ E[m], σ 7−→ σ(QP )−QP

It is well defined because [m](σ(QP )−QP ) = σ([m]QP )− [m]QP = σ(P )− P = O.
Now suppose P, P ′ ∈ E(K) ∩mE(L) satisfy λP = λP ′ . Then

σ(QP )−QP = σ(QP ′)−QP ′ =⇒ σ(QP −QP ′) = QP −QP ′

19



Hence QP − QP ′ ∈ E(K) =⇒ P − P ′ = [m](QP − QP ′) ∈ mE(K). This proves
that we have bijection of sets

Φ −→ HomSets(Gal(L/K), E[m]), P 7−→ λP

Therefore Φ is finite and this implies E(K)/mE(K) is finite.

Next we define the Kummer pairing which reduces the problem of showing finite-
ness of E(K)/mE(K) to showing finiteness of the field extension L/K where L =
K([m]−1E(K)) is the compositum of all fields K(Q) as Q ranges over all points in
E(K̄) satisfying [m]Q ∈ E(K).
Definition 6.3. The Kummer pairing κ : E(K) × Gal(K̄/K) → µm is defined
as: For P ∈ E(K), choose any Q ∈ E(K̄) satisfying [m]Q = P . Then

κ(P, σ) := σ(Q)−Q

The following are basic properties of Kummer pairing. Although these properties
can be proven directly, we remark that all these propeties follows immediately from
properties of group cohomology.
Proposition 6.4. a) The Kummer Pairing is well defined and is bilinear.
b) The kernel of the Kummer pairing on the left is mE(K) and on the right is
Gal(K̄/L) where L = K([m]−1E(K)) hence induces a perfect bilinear pairing

E(K)/mE(K)×Gal(L/K)→ µm

Proof. a) Checking that the Kummer pairing is well-defined is routine exercise (re-
membering that E[m] ⊂ E(K)). Bilinearity in first component is obvious. For
bilinearity in second component, we have

κ(P, στ) = στ(Q)−Q = σ(τ(Q)−Q) + (τ(Q)−Q) = σ(κ(P, τ)) + κ(P, σ)

and σ(κ(P, τ)) = κ(P, τ) because E[m] ⊂ E(K).
b) The kernels on the left and right part are obvious. The induced pairing is

perfect is also obvious once we see that the extension L/K is Galois. This follows
from the fact that the set [m]−1E(K) is Gal(K̄/K) invariant. Hence L/K is normal
extension.(it is seperable because char(K) = 0)

From perfect pairing, we see that E(K)/mE(K) finite ⇐⇒ Gal(L/K) finite
(proof - Suppose E(K)/mE(K) is infinite given by {ai}∞i=1 and Gal(L/K) is finite
given by {σi}ni=1. Since range of pairing is finite, we can extract out a subsequence on
which σ1 is constant. Applying this process n times, we get a subsequence {aij}∞j=1
on which every σi is constant. Hence σi(ai1 − ai2) = 1 for all i = 1, ..., n).

Now we look at some definitions and some facts from algebraic number theory.
Definition 6.5. Let E/K be an elliptic curve and v ∈M0

K be a discrete valuation.
We say E has good(resp.bad) reduction at v if E has good(resp. bad) reduction
when considered over Kv. We denote the reduced curve over the residue field kv by
Ẽ/kv.
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Remark 6.6. Taking a Weierstrass equation for E/K, y2 +a1xy+a3y = x3 +a2x
2 +

a4x+ a6, with discriminant ∆. Then for all but finitely many v ∈M0
K , we have

v(ai) ≥ 0 for all i = 1, ..., 6 and v(∆) = 0
For any v satisfying these conditions, Ẽ/kv is non-singular. This shows that E has
good reduction at all but finitely many v ∈M0

K .
We now give some standard facts from algebraic number theory. Recall the def-

inition of unramified extension of a local field and of inertia group of finite Galois
extensions of a local field from section 5.1.
Theorem 6.7. ([Neukirch, 2008], II.7.2) Let L/K and K ′/K be two extensions
inside an algebraic closure K̄/K and let v ∈M0

K be a discrete valuation and v′ ∈M0
K′

be a extension of v to K ′ then
L/K unramified at v =⇒ LK ′/K ′ unramified at v′

Each subextension of an unramified extension at v is again unramified at v.
Corollary 6.8. The composite of two unramified extensions at v is again unramified
at v.

Now continuing our proof of theorem 6.9. The following are the properties of the
extension L/K.
Proposition 6.9. a) The extension L/K is abelian and has exponent m. i.e. every
element in Gal(L/K) has order dividing m.
b)Let S = {v ∈M0

K : E has bad reduction at v}⋃{v ∈M0
k : v(m) 6= 0}⋃M∞

K

Then L/K is unramified outside S.

Proof. (a) This follows immediately from 6.1 which implies that there is an injection
Gal(L/K) −→ Hom(E(K), E[m]), σ 7−→ κ(·, σ)

Note that every element of Hom(E(K), E[m]) has order dividing m.
(b) Let v ∈MK\S and let Q ∈ E(K̄) s.t. [m]Q ∈ E(K) and let K ′ be the normal

closure of K(Q). By corollary 6.8 the composite of two unramified extensions is
again unramified, it is sufficient to prove that K ′/K is unramified. Let v′ ∈MK′ be
a place lying above v and k′v′/kv be corresponding extensions of residue fields. Since
v 6∈ S, E has good reduction at v hence good reduction at v′ as well. Thus we have

E(K ′) −→ Ẽ(k′v′)
the usual reduction map.

Let Iv′/v be the inertia group and σ ∈ Iv′/v. By definition σ acts trivially on Ẽ(kv),
we have ˜σ(Q)−Q = σ(Q̃)− Q̃ = Õ. Also [m](σ(Q)− Q) = σ([m]Q)− [m]Q = O.
By theorem 5.6(b), σ(Q)−Q = O. Since σ was arbitrary, the inertia group Iv′/v acts
trivially on all generators of K ′/K (generators are conjugates of point Q). Therefore
K ′/K is a unramified extension at v.

We recall some results from algebraic number theory, Galois theory and Kummer
Theory which are used in the proof of the proposition 6.15.
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Theorem 6.10. ([Neukirch, 2008], I.6.3) The ideal class group ClK of K is finite.
Let S ⊂MK be a finite subset of places of K which includes all the archimedian

places i.e. M∞
K ⊂ S.

Definition 6.11. Then the ring of S-integers, denoted by RS is

RS = {a ∈ K : v(a) ≥ 0 for all v ∈MK with v 6∈ S}

The units in this ring are called the S-units.
Theorem 6.12. ([Neukirch, 2008], I.11.7)The group of S-units is finitely generated.
Proposition 6.13. ([Dummit and Foote, 2003], Proposition 14.19) Let L/K be a
Galois extension and K ′/K be any extension (not necessarily finite), then LK ′/K ′

is a Galois extension, with Galois group

Gal(LK ′/K ′) ∼= Gal(L/L ∩K ′)

Theorem 6.14. (Kummer)Let K be a field contaning µm. Then its maximal
abelian extension of exponent m is the field K(a1/m : a ∈ K).

The next proposition says that any extension satisfying properties a) and b) of
proposition 6.9 is necessarily a finite extension thereby completing the proof of the
Weak Mordell-Weil theorem.
Proposition 6.15. Let K be any number field and S ⊂ MK be finite set of places
containing M∞

K , and let m ≥ 2 be an integer. Let L/K be maximal abelian extension
of K which is unramified outside S. Then L/K is a finite extension.

Proof. Claim: WLOG, we can assume that µm ⊂ K.
Suppose the above proposition is true for some finite extension K ′ of K, where S ′

is the set of places of K ′ lying over S. Since by 6.13 and 6.7, LK ′/K ′ is an abelian
exponent of exponent m and unramified outside S ′, so it is a finite extension. Again
by 6.13, L/L∩K ′ is a finite extension and L∩K ′/K is finite since K ′/K was finite.
Therefore L/K is a finite extension.

Claim: WLOG, we can assume that RS is a principal ideal domain.
We can also increase the size of S since this only has the effect of making L larger.

Now choose integral ideals a1, . . . , ah representating the ideal classes of K and adjoin
to S the valuations vp for primes p|a1 . . . ah. Then RS is a PID. To see this, note
that RS is the localization of R w.r.t. the multiplicative set ⋃

p∈S\M∞
K

p

 \{0}
Let A be any ring, then ideals of T−1A is in one to one correspondence with ideals
of A which do not meet S and if a∩T 6= 0, then extension of a in T−1A is the whole
ring. Now it is clear that class group of RS is trivial.

We also enlarge S so that v(m) = 0 for v 6∈ S. By 6.14, L is the largest subfield
of K(a1/m : a ∈ K) which is unramified outside S. Now let v ∈MK\S and consider
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the equation Xm − a over Kv. Since v(m) = 0 and disc(Xm − a) = ±mmam−1, by
[Lang, 1994], II.7, we have that Kv(a1/m)/Kv is unramified ⇐⇒ m|ordv(a).

It is clear that when we adjoin mth roots, it is sufficent to take only one represen-
tative for each class in K∗/(K∗)m. So if we let

TS = {a ∈ K∗/(K∗)m : m|ordv(a) for all v ∈MK\S}

Then L = K(a1/m : a ∈ TS). To complete the proof, it suffices to prove that TS is
finite. Consider the natural map R∗S −→ T . Claim: This map is surjective.

Let a ∈ TS and let aRS = pe1
1 . . . per

r . Since m|ordv(a) for all v 6∈ S and prime
ideals of RS correspond to the valuations v 6∈ RS, we see that m|ei and aRS is mth

power of an ideal in RS. Since RS is PID, we can find b ∈ K∗ s.t. aRS = bmRS. So
there is some u ∈ R∗S s.t. a = ubm. So u and a give same elements TS and prove the
surjectivity. Also, kernel clearly contains (R∗S)m so we have

R∗S/(R∗S)m � TS

By theorem 6.12, R∗S/(R∗S)m is finite. Hence TS is finite.

6.2 The Descent Theorem
It is easy to see that finiteness of E(K)/mE(K) does not imply finite generation
of E(K). For example, R/mR = 0 for every integer m ≥ 1 but R is certainly not
f.g. abelian group. The problem is that in R, arbitrary large elements are divisible
by m. We will show that this is not the case with E(K) by defining an appropriate
notion ”size” on E(K) and then showing [m] increases the ”size”.

In this section we axiomatize the situation and describe the type of size (or height)
function needed to prove that an abelian group is finitely generated.
Theorem 6.16. (Descent Theorem) Let A be an abelian group. Suppose there
exists a (height) function h : A→ R satisfying
(a) For every Q ∈ A, ∃ C1 only depending on A and E s.t.

h(P +Q) ≤ 2h(P ) + C1 for all P ∈ A

(b) There is an integer m ≥ 2 and a constant C2 depending only on A s.t.

h(mP ) ≥ m2h(P )− C2 ∀P ∈ A

(c) For every constant C3, the set {P ∈ A : h(P ) ≤ C3} is finite.
Suppose further that for the integer m in (b), the group A/mA is finite then A is
finitely generated abelian group.

Proof. Let Q1, Q2, ..., Qr be finitely many cosets representatives of A/mA. Let P
be an arbitrary element in A, then there exists indices i1, i2, ..., im and elements
P1, P2, ..., Pn ∈ A such that

P = Qi1 +mP1

P1 = Qi2 +mP2
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.

.

.
Pn−1 = Qin +mPn

For each index j, we have

h(Pj) ≤
1
m2 (h(2Pj) + C2)

= 1
m2 (h(Pj−1 −Qij) + C2)

≤ 1
m2 (2h(Pj−1) + C ′1 + C2)

where C ′1 is the maximum of constants from (i) for Q ∈ {−Q1, ...,−Qr}. Using this
inequality repeatedly, we get

h(Pn) ≤
( 1
m2

)n
h(P ) + 1

m2

(
1 + 2

m2 + ...+
( 2
m2

)n−1)
(C ′1 + C2)

<
( 1
m2

)n
h(P ) + C ′1 + C2

m2 − 2
≤ 1

2nh(P ) + 1
2(C ′1 + C2) since m ≥ 2

So for n sufficiently large, we have h(Pn) ≤ 1 + 1
2(C ′1 + C2)

Since P is a linear combination of Pn and Q1, ..., Qr,

P = mnPn +
n∑
j=1

mj−1Qij

Hence, the set

{Q1, Q2, ...., Qr} ∪ {P ∈ A : h(P ) ≤ 1 + 1
2(C ′1 + C2)}

generates A which is finite by (c).

6.3 Mordell-Weil Theorem over Q
In this section, we complete the proof of the Mordell-Weil Theorem over Q:
Theorem 6.17. Let E/Q be an elliptic curve. Then E(Q) is finitely generated.

In order to apply the theorem 6.16, we need to define a height function on E(Q)
and prove that it has the required properties.
Definition 6.18. Let t ∈ Q and write t = p/q as a fraction in lowest terms. Then
height of t, denoted by H(t) is defined by H(t) = max{|p|, |q|}.
Definition 6.19. The logarithmic height on E(Q), relative to given Weierstrass
equation, is given by

hx : E −→ R, hx(P ) =
logH(x(P )) if P 6= O

0 if P = O

24



Lemma 6.20. Let E/Q be an Elliptic curve given by a Weierstrass equation

E : y2 = x3 + Ax+B with A,B ∈ Z

(a) For every P0 ∈ C(Q), ∃ C1 only depending on P0, A and B s.t.

h(P + P0) ≤ 2h(P ) + C1 for all P ∈ C(Q)

(b) There is a constant C2 that depends only on A and B s.t.

h([2]P ) ≥ 4h(P )− C2 for all P ∈ C(Q)

(c) For every constant C3, the set {P ∈ A : h(P ) ≤ C3} is finite.

Proof. (a) Assume that C1 > max{hx(P0), hx([2]P0)} so that a) is true when P0 = O
or P ∈ {O,±P0}. In other cases, write

P = (x, y) =
(
a

d2 ,
b

d3

)
and P0 = (x0, y0) =

(
a0

d2
0
,
b0

d3
0

)

where all fractions are in lowest terms. The addition law says that

x(P + P0) =
(
y − y0

x− x0

)2
− x− x0

= (xx0 + A)(x+ x0) + 2B − yy0

(x− x0)2

= (aa0 + Ad2d2
0)(ad2

0 + a0d
2) + 2Bd4d4

0 − 2bdb0d0

(ad2
0 − a0dr)2

In computing the height of a rational number, cancellation between numerator and
denominator can only decrease the height, so we have

H(x(P + P0)) ≤ C ′1max{|a|2, |d|4, |bd|} (6)

where C ′1 depends on A,B, a0, b0, d0. Now P ∈ C, so we have

b2 = a3 + Aad4 +Bd6 =⇒ |b| ≤ C1”max{|a|3/2, |d|3} (7)

Combining this with above result, we get

H(x(P + P0)) ≤ C1max{|a|2, |d|4} = C1H(x(P ))2

Now taking logarithm completes the proof.
(b) Choose C2 to satisfy

C2 ≥ 4max{hx(T ) : T ∈ E(Q)[2]}

so we may assume that [2]P 6= O. Now let P = (x, y), we have

x([2]P ) = x4 − 2Ax2 − 8Bx+ A2

4x3 + 4Ax+ 4B
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Now define the homogenous polynomials

F (X, Y ) = X4 − 2AX2Z2 − 8BXZ3 + A2Z4,

G(X,Z) = 4X3Z + 4AXZ3 + 4BZ4

If we write x(P ) = a/b in lowest terms, then x([2]P ) = F (a, b)/G(a, b).
In contrast to proof of (a), We are now to looking to lower bound the height on

doubling which means we have to bound how much cancellation occurs in numerator
and denominator of x([2]P ).

To do this, we use the fact that F (X, 1) and G(X, 1) are relatively prime polyno-
mials so they generate unit ideal in Q[X]. This implies that identities of following
sort exitst. (remember that ∆ 6= 0)
Lemma 6.21. Let ∆ = 4A3 + 27B2, and define polynomials

F (X, Y ) = X4 − 2AX2Z2 − 8BXZ3 + A2Z4,

G(X,Z) = 4X3Z + 4AXZ3 + 4BZ4,

f1(X,Z) = 12X2Z + 16AZ3,

g1(X,Z) = 3X3 − 5AXZ2 − 27BZ3,

f2(X,Z) = 4∆X3 − 4A2BX2Z + 4A(3A3 + 22B2)XZ2 + 12B(A3 + 8B2)Z3,

g2(X,Z) = A2BX2 + A(5A3 + 32B2)X2Z + 2B(13AB3 + 96B2)XZ2 − 3A2(A3 + 8B2)Z3.

Then the following identities hold in Z[A,B,X, Y ]:

f1(X,Z)F (X,Z)− g1(X,Z)G(X,Z) = 4∆Z7 (8)

f2(X,Z)F (X,Z)− g2(X,Z)G(X,Z) = 4∆X7 (9)

Proof. This can be verified directly via a tedious calculation. The identities can be
obtained using euclidean algorithm or using theory of resultants.

Now let g = gcd(F (a, b), G(a, b)). From equations 8 and 9, we get g|4∆. In
particular, |g| ≤ 4|∆| and we get

H([2]P ) ≥ max{|F (a, b)|, |G(a, b)|}
4|∆|

On the other hand, the same identities gives

|4∆b7| ≤ 2max{|f1(a, b)|, |g1(a, b)|}max{|F (a, b)|, |G(a, b)|}
|4∆a7| ≤ 2max{|f2(a, b)|, |g2(a, b)|}max{|F (a, b)|, |G(a, b)|}

Looking at the expressions for f1, f2, g1, g2 in Lemma 6.21, we get

max{|f1(a, b)|, |g1(a, b)|, |f2(a, b)|, |g2(a, b)|} ≤ Cmax{|a|3, |b|3}

where C is a constant depending on A and B. Combining last three inequalities

max{|4∆a7|, |4∆b7|} ≤ 2Cmax{|a|3, |b|3}max{|F (a, b)|, |G(a, b)|}
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Cancelling max{|a|3, |b|3} from both sides and using H(x(P )) = max{|a|, |b|},
max{|F (a, b)|, |G(a, b)|}

4|∆| ≥ (2C)−1max{|a|4, |b|4}

(c) This is clear since for any constant C, the set

{t ∈ Q : H(P ) ≤ C}

is finite since it can have atmost (2C + 1)2 elements and for any value of x, there
can be atmost 2 values of y. Hence the given set is finite.

The Mordell-Weil theorem over Q follows using lemma 6.20 and theorem 6.16,
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